CHEK - 101058559

Change toolkit for digital building permit

Deliverable number

D2.4

Deliverable name

CHEK data validity-supporting tools

Work package number WP?2 Information requirements for the DBP use case

Deliverable leader

Delft University of Technology

Dissemination Level Public

Status Final

Version Number V1.0

Due date 30/11/2024

Submission date 09/12/2024
Project no. 101058559
Start date of project: 1 October 2022
Duration: 36 months

File name:

* X %

*
*
*

*
*
* 4k

Funded by
the European Union

CHEK_101058559_D2.4_CHEK data validity-supporting
tools_v1.0-Final

This project has received funding from the European Union under the Horizon Europe
Research & Innovation Programme 2021-2027 (grant agreement no. 101058559).

Views and opinions expressed are however those of the author(s) only and do not necessarily
reflect those of the European Union. Neither the European Union nor the granting authority
can be held responsible for them.

D2.4: CHEK data validity-supporting tools

09/12/2024

CHEK - 101058559

Author Organisation E-mail

Jasper van der Vaart TUD j.a.i.vandervaart@tudelft.nl

Peter Bonsma RDF peter.bonsma@rdf.bg

Luiggi Alfaro DIR luiggi.alfaro@diroots.com

Alejandro Villar 0GC avillar@ogc.org

Author Organisation Role Date

Claus Nagel VCS Reviewer 05/11/2024

Léon van Berlo BSI Reviewer 07/11/2024

Elisa Dutsch VCS Reviewer 07/11/2024

Silvia Mastrolembo Ventura UBS WP leader 26/11/2024

Jantien Stoter TUD Coordinator 09/12/2024

Release | Description Date Author

V0.1 First Draft 21112024 Peter Bonsma, Luiggi Alfaro & Alenjadro Villar

V0.2 Second Draft 22/11/2024 Jasper van der Vaart, Peter Bonsma, Luiggi
Alfaro & Alenjadro Villar

V1.0 Final 9/12/2024 Jasper van der Vaart, Peter Bonsma, Luiggi
Alfaro & Alenjadro Villar

D2.4: CHEK data validity-supporting tools

09/12/2024

mailto:j.a.j.vandervaart@tudelft.nl
mailto:peter.bonsma@rdf.bg
mailto:luiggi.alfaro@diroots.com
mailto:avillar@ogc.org

CHEK - 101058559

1. EXECUNIVE SUMMAIY ..ottt bbb 4
2. INETOTUCHION. ...t sttt 5
3o IFC VAlIAALON ..ottt 7
3.1 GENEIAl AESCHIPLON ...ttt bbb bbbttt b s b b s b s s e n bbb b s s 7
3.2 EXPRESS Schema Validation............c.cueiririeeieeseee st 8
3.3 IDS 1.0 VAlIAAHON ..ottt 12
3.4 PSD VAlIAALON ... 14
3.5 Micro-Services Validation USE..........ccueeieiriiieiiessee ettt 16
3.6 FUIUIE SEBPS ...ttt bbbttt b s s b bbbttt bbb n s 16

A, JFC EXPOMEL ..ottt sttt 17
4.1 GENEIAl AESCHIPHONv.viii ettt bbbt bbb st bbb en e 17
4.2 APPICALION WOTKFIOW ...ttt bbbttt beas 18
4.3 ACRIBVEIMENTS ...ttt ettt sttt s st bbbt e st et teas 19

5. CityGML / CityJSON data requirements and geometry validatorccoeeeriiieiccceic e, 20
5.1 GENETAl ABSCIIPHON ...vveiecicie ettt 20
5.2 Architecture and iNteroperabilitycoceiiiiiccee e 22
5.3 GEOMELY VAlIAALION. ..ottt 23
54 Semantic data and semantic Validation ..o 25
5.5 DA MOTEIS ...t 27
551 Profile definition........c.ccieiieicees s 27
5.5.2 City RDF MOGEL ..ottt enes 28
553 Validation FEPOM ..ottt ettt b 31

56 RESUIS, ANA NEXE STEPS ...ttt bbbttt bans 36
LISt OF FIGUIBS ...ttt ettt bbbttt b s bbb bbb n bbbt s st 37
LISE OF TADIES ...vveeeitei ettt 37
List Of USEA @DDTEVIAHIONSvuiviicieies ettt 38

D2.4: CHEK data validity-supporting tools

09/12/2024

CHEK - 101058559

The main aim of WP2 is to improve data and service interoperability by (1) the interpretation of building regulations to
define information requirements for the digital building permit use case and associated dataset (D2.1) and (2) ensuring
data interoperability within the defined GeoBIM environment through open Building Information Modelling (BIM) and
3D geoinformation standards (D2.2; D2.3). The final step of WP2, T2.5/D2.4 “CHEK data validity-supporting tools” is
not a further refinement of the rules, regulations or files but the support of the validation and refinement of this data in
order to guarantee the quality of BIM and 3D city models as well as their compliance to defined data schema. To fulfil
this role three software applications have been developed: an IFC validator, IFC exporter and a CityGML/CityJSON
validator.

The IFC validation focuses on verifying compliance with the CHEK IFC schema (D2.2). It is splitinto four tools:
EXPRESS schema validation, Information Delivery Specification (IDS) validation, Property Set Definition
(PSD) validation and micro-services.

The IFC Exporter enhances the integration of IDS requirements for the IFC exports within selected BIM
authoring software: Autodesk Revit (version 2022 to 2025) and Graphisoft ArchiCAD (v27). At the core the
exporter populates the data based on IDS requirements. It streamlines the IFC export workflow by allowing
users to configure IDS settings and efficiently map necessary IFC data.

The CityGML/CityJSON validator ensures the presence and proper characteristics of city objects in a set of
CityGML and/or CityJSON files, as well as the correctness of the geometry primitives employed in them. The
semantic data is validated in Resource Description Framework (RDF) while the geometry is validated with the
help of val3dity which was earlier developed outside of the CHEK project.

D2.4: CHEK data validity-supporting tools

09/12/2024

CHEK - 101058559

The main aim of WP2 is to improve data and service interoperability by (1) the interpretation of building regulations to
define information requirements for the digital building permit use case and associated dataset (D2.1) and (2) ensuring
data interoperability within the defined GeoBIM environment through open Building Information Modelling (BIM) and
3D geoinformation standards (D2.2; D2.3). These are the Industry Foundation Classes (IFC) and CityGML/CityJSON
file formats respectively. The files with these additional and refined information requirements are named CHEK IFC
and CHEK CityGML/CityJSON respectively. The final step of WP2, T2.5/D2.4 “CHEK data validity-supporting tools” is
not a further refinement of the rules, regulations or files but the support of the validation and refinement of this data in
order to guarantee the quality of BIM and 3D city models as well as their compliance to defined data schema.

e
5

EIR FOR THE DBP USE CASE -

COLLECTION OF
BUILDING PERMIT REGULATIONS

| INTERPRETATION OF
BUILDING PERMIT)RDF

} REGULATIONS AND LOGICS
4D LISBOA OF VERIFICATION BUILDING-MODELLING
SPECIFICATION > 'gélggoe‘rl‘g
1 (CHEKIFC) SUPPORTING
@57 Ioisrescia TOOLSETFOR
IPR—— INFORMATION EXPORTAND
PRAHA REQUIREMENTS VALIDATION
— . (e.g., exporters, post-
Wmmn Piceno ,@ CEBE: i processing tools, validity
QP Sanssiiim checking tools)
CITY-MODELLING SPECIFICATION
(CHEK CityGML)

Z fraunhofer # SIA ZWEI govionosvAil W e B> DIRGots. Mostostal @liXinaps

TAUA 2

Figure 1 WP2 workflow with T2.5/D2.4 highlighted

Itis crucial to validate both the geometrical and non-geometrical attributes embedded in the CHEK models to guarantee
correct functioning of downstream applications. These applications require certain data to function and this will not be
able to succeed if data are missing or invalid. Validating the data before further processing will increase the reliability
of these downstream applications and their output. These applications are often able to validate the data themselves.
However, centralising the validation process to a set of external tools has a couple of advantages:

All parties can validate the data they send and receive with the BIM and 3D city models validation tools. Issues can
thus be found and addressed very closely from their origin, this will reduce the chance of certain errors propagating
through the DBP process, because errors can be corrected early in the process.

A central validation tool will reduce the chances of different interpretations being utilized for the same rules. When
every downstream application utilizes its own validation process that has been developed by different individuals or
organisations a rule can be interpreted differently across these applications. This could result in a situation where a
value or attribute can be validated as compliant according to one application while the same value or attribute can be
validated as invalid for another.

A central validation tool will only require a single update when regulations are changed. When every downstream
application utilizes its own validation process not all will be updated at the identical time but across a larger time window.
This could result in a situation where during an updating period the same files are being handled differently.

D2.4: CHEK data validity-supporting tools

09/12/2024

CHEK - 101058559

This deliverable will address the creation and documentation of the exporting and post-processing toolkit. Two
validators have been developed for checking the two defined data schemas and their contents: the CHEK IFC and the
CHEK CityGML/CityJSON schema. Moreover, two IFC exporters have been developed for Autodesk Revit and
Graphisoft ArchiCAD. Contents of this deliverable can be split into two different validation topics or scales, see Figure
1: The validation of the building modelling specification defined in D2.1 and D2.2, i.e. CHEK IFC

Chapter 3 will cover the IFC validator developed by RDF. This section will cover Express, IDS, and PSD validation
expanded with micro-services.

Chapter 4 4 will cover the IFC exporters for ArchiCAD and Revit developed by DiRoots
The validation of the city modelling specification that was defined in D2.1 and D2.3, i.e. CHEK CityGML/CityJSON

Chapter 5 will cover the CityGML/CityJSON validator developed by the OGC

D2.4: CHEK data validity-supporting tools

09/12/2024

CHEK - 101058559

The IFC Validation is focused on the validation of the CHEK IFC schema (D2.2). The purpose of this set of validation
tools is to make sure an IFC file is a valid CHEK IFC file. If a design is exported as a perfect CHEK IFC file, it will be
possible for downstream applications to find the information required to execute the automated required automated
processing. Therefore, it is important to understand the quality of the given input in order to value the quality of the
output of downstream applications. CHEK IFC not only requires an IFC file according to a certain schema (IFC4 ADD2
TC1) and a certain MVD but also introduces very specific requirements concerning the content within the design. This
means even a format compliant IFC file is not always a valid CHEK IFC file. All CHEK validation tools are developed
in a way that allows their use in generic cases as well. This allows these tools, developed for CHEK, to be reused in
many use cases outside the CHEK project. However, it also allows CHEK itself to adjust CHEK IFC definition and
adapt to more recent versions of the IFC standard for example without losing the validation capabilities. CHEK IFC
Validation consists of four individual groups of tooling:

EXPRESS (ISO 10303-11) Schema Validation

Each IFC schema (before IFC5) is defined in a computer interpretable language, i.e. EXPRESS. Although IFC itself as
an ISO standard also includes more detail and written explanations in the documentation the subset defined in
EXPRESS can be used as validation for the actual IFC files exported according to that schema. An IFC independent
validation tool is created based on the EXPRESS language allowing validation of IFC files against the schema as
delivered by buildingSMART International.

Information Delivery Specification (IDS)1.0 Validation

The IDS file defines the specific requirements regarding information that should be available in the IFC file. This
includes the cardinalities of certain objects but also the structure of stored information. An IDS file defines extra rules
on top of the IFC specification itself. The IDS validation tooling allows validation of an IFC file concerning the extra
requirements defined in the IDS file.

Property Set Definition (PSD) Validation

Next to the EXPRESS schema and documentation the IFC I1SO specification also defines Property Set and Property
definitions. These definitions can be seen as a ‘soft’ extension of the EXPRESS file. This is not included in the
EXPRESS file to prevent the file from becoming too large and cumbersome. The open standard used to define these
Property Sets and Properties is Property Set Definition (PSD); This standard can also be used to define Property Sets
and Properties that fall outside the ISO standard of IFC. This validation tool checks if PSD is followed correctly and can
be seen as an extension of the EXPRESS Schema Validation tooling.

Micro-Services Validation Use

Micro-services can be used to extend, adjust and fix potential inconsistencies in IFC files. However, in a similar manner
mirco-services can also be used to validate IFC files. Instead of adjusting IFC files a micro-service can check if already
defined values in the IFC file are ‘in line’ with values that the application computed. For example, instead of adding a
BuildingHeight property to an IFC file, the calculated building height by a micro service can also be used to check if the
stored value for this property is available and the same (or the same within boundaries) as the calculated value.

D2.4: CHEK data validity-supporting tools

09/12/2024

CHEK - 101058559

All mentioned validations tools are developed as C++11 (ISO/IEC 14882) source code. The tools are all made available
through a public GitHub page except for the EXPRESS validation. It is expected third party tooling will use all these
sources as part of their own development.

To ease this process of integrating the delivered source code an API has been created for each of the first three
validation sources (EXPRESS, IDS and PSD). These API’s are also integrated in one example IFC Viewer application
that is delivered together with source code access. This IFC Viewer will be used in this document to show the results
of these developed validations.

When comparing the mentioned validators to the definition of CHEK IFC as defined in D2.2it can be noted that one
validation tool is missing. This is the validation tool focusing on validation of the selected MVD (Model View Definition),
i.e. mvdXML validation. Development of this validator was initially planned but since mvdXML is deprecated and being
phased out it was decided to not implement it and trust certified software companies to export such data correctly.
BuildingSMART International, as partner of the CHEK project, advised using the newer IDS standard for exchange
requirements definitions.

EXPRESS as an ISO standard (ISO 10303-11) is a language that allows the definition of an EXPRESS schema. This
is in many ways like XSD (XML Schema Definition) if standard IFC SPFF file (STEP Physical File Format) would be
compared to an XML (Extensible Markup Language) file. However EXPRESS does not only define a schema data
model itself, but it also harbours a very simple version of a programming language. This programming language part
of EXPRESS is used to apply validation on content and in case of IFC schemas is quite elaborated. The EXPRESS
Schema Validator allows validation of the data model as well as validation of the WHERE rules and FUNCTIONS
written according to the ISO specification. This was a time intensive task as it includes support for the embedded
‘programming language’ being part of the EXPRESS definition, and an important part was already available in the IFC
Engine library as a late binding solution, see Figure 5.

D2.4: CHEK data validity-supporting tools

09/12/2024

(¥ 4 CHEK - 101058559

DIGITAL BUILDING PERMIT

[imea
SFopsOmEaxt
It is FALSE: (S[ZECF (3 on) = 1) XOR (5

ShepaOfrod.rt
Sroperodat
ShepeOiProduct

15 FALSE: (SIZECF(S - LR

5 FALSE: (SIZECFS - 1X0R

E (SIZECFI o) = 10O (5

SrepeOProt
SrepaOrod.rt
StvpeOFrodat
Srapafrodat

SE (SIZECFI o) = 13X0R. (3

<E (SIZECFIS - LR

5 FALSE: (SIZECFS - 1X0R

5 FALSE: (SIZECF(5 o) = 110OR (5

ShepOred.t
SropsOFrodat
Sroperodat

it 5 FALSE: (SIZECFS - 1R

15 FALSE: (SIZECFS - 1R

5 FALSE: (SIZECFS - 1X0R

ShepaOrodct

E (SIZECFH o) = 110OR (5

ShepOred.t
FcShopsockl R 11 1 vbketec, et s FALSE: (SIZECF 5
clofed, st is FALSE

= 1)¥OR

eptenal st r RelsecB.ldrgElement
oy IerBourdares

| rea it is FALSE

ca)
tnanazs, | |8
taj s
rsst)
ta)

| rea it is FALSE 5.
RelsecB.ldrelement
InrerBourdaris

fibaksadeks

Figure 2 IFC Viewer screenshot Lisbon design in Autodesk Revit with 1352 identified issues.

In Table 1, Figure 2, , Figure 3 and Figure 4 the results of the EXPRESS validation on CHEK IFC models can be found.
When analyzing these results, it was noted that all commercial BIM authoring platforms that were used to generate the
CHEK project's IFC files are making mistakes (e.g., over 100 different issues in the IFC files developed within the
CHEK project). These issues range from missing arguments to incorrect geometry. So even although the software is
certified by bCert the generated IFC file has more than a few issues. These issues are mainly due to mistakes made
by the BIM authoring software and very hard if notimpossible to prevent from happening by the software's users. These
findings have been shared with buildingSMART International and the software vendors; it is expected that such issues
will be solved by the vendors once CAD systems will be certified for the most recent official IFC version as released
earlier this year, IFC 4.3 ADD2 (ISO 16739-2024). Because adoption of new IFC versions has been a slow process in
practice and partners within CHEK do not support this standard yet, CHEK IFC is not based on this new official
standard.

D2.4: CHEK data validity-supporting tools

09/12/2024

CHEK - 101058559

DIGITAL BUILDING PERMIT

81412 AR AP 510

5 PRAHA, GOA VA 10 fc - fevizwer - o x
File Viewr Help_Encoding
=0 FefuildingSteray 'Levl 3 -
gecmetry
B 1clsb Flooes 1A 23 Pré-dalle et Calle 30em1537C &
B 1clsb Floces 1A 43 Faur plancher métalique 20 a1
s B eslab FloorGrass 315612) - |-~ " Y S R

P W rule FeSE CormectT pepasored 5 WOSted, esult & FALSE [SZEDF(STypey) = 0] OR (TFCA TFCSLABTVPE! [N TPECFISELP OB 15T skt
B Ml Basie WallSIA21.lrique 100 Vide d0_15 1|, ore ool Crmeet Typmoesigne s olaed, rasl i FALSE: (SIZEDFISTypecky) = 0) CF. (IFCA.IFCELAETYFE' M TYPECFISELP b ec JTopecs. ieske
111wl Basic WallSIA 21_Bicue 100 | Vide 40_15 1 | Wheremrub Iislab CorrectTypeiesigned s violsted, st i FALSE! (STEDF T ypecky) = 0) OF (1FCA IFCS_ABTYRE! IN TRECF(SEL A et IsThpect. =
3B HeWall Basie Wall SIA 21_irique 100 _Vide 40_Is 1 icProd ciDefintenthéps - ShepeCFrodut
s FALSE: (5126 = 1) 908 (SIZECRHEELFYT, lieshepePapresariatn
B geometry e s 1.1 (Prod. cibefintiordepe ShepeCiErodixt
1 eWall Basic Wall SIA 21 Siieo 215317730 hepeodel R L i winlaed, (e it is FALSE! (SIZECF (SELFfRepesertation OPYod itReprasentetin) = 1) DR, (SIZEDFSELFY

VeShepspresertatin
01 HWal Basic WallSIA 21 Slkco 215317731 iProg ciDelntrSeps - ShapeCfProet

v rmmmfk (SIZBCF(SELF e esartstion CPYod stRegrasentation) = 1) DR (SIZEDSELFYT
BTl Basic Wall S1i 21

ShepRaprsaeation
icProo riDefintorehepe shapeCiPronict

b o ieWal Fosle Wall A 21 FALSE. (312K 130, (SIEECRHEELFYL S epRapresertaton
A s R Fageasin iz msnatisema ks -t (CPreO DefitorSeps ShapeCfProdsT
< 3| [Whersrue Fosrepstuockl e Il FALSE: (5125 = 1) R (STEOREELAY st

epsepreseriaton
fcProo.ciDefinforchepe - ShapeCfFrodxt

erere el W vl s PALSE (STECECE Pt P teqrseneton] =)06, (SEEDRSELFY! mten

S 't Agaregat 1. _nmmrmnasm ShapeCiProdet
a1 1 n WRIL it eI FALSE.(SLZECE(SELPRap e st OPPOO.CIREGrassnistion) = 1) XOR (SIECRGELFYY 1
rewat torysi22 1 it e inis 1.1 anmmmsa Stupectrods
@ WR1L s it sl s FALSE: (SIZES = L) YR (SIECHEELRYL = tatir
- P 22 0 st e s 1.1 Py e R —
S_TENESLIE OMDE_ ST e iris FALSE, (siZEC = 1) Y08, (SIZECHEELFYT, tist eseratn
3 o el 1.1 (Prod. cibefintiortepe ShepeCiErodixt
sk wallSIA 21_Enque 1 Where b IeShpetdodl WR1L i visetod, Fes 1 FALSE: (SIZECF (SELPUIRepwesertatin OPFod SRegresentation) = 1) YR (SIZEDFSELFYT st esertation
4 Descapton omrspauraze o it szl -1 fProd. i litorsheps - ShapeCtProcias
5 HoDbjectDe Whereoub I J W11 i vikatad, oo 1 FALSE: (SIZECF (SELFIRepssertation OfFrodh ctRsgrasentsion) = L) YOR (SITEDRSELFYT = esertation
[E—— (o Ao n.sdénm.smamal«‘nahmml n fcProd ctDefintirehegs ShapeciProxe
g Wi rule Fckhepeocel R L f vileed,res.i s FALSE: (SIZEF = L) YR, (SIZECHEELFYT, shepePagresariation
I Hests tay nn.amnm.sn\amu«m\mm1 -1 mmlmrmnns-aoé ShapeCfRroaxt
V. Isestedty caj Where b Icshepeiocel WR1L 6 visetad, (et 1 FALSE: (SIZECF (SELFUlRepesertation OfProd.ctRegresentation) = 1) XDR (SZEDFSELFYT tiespepeRepeser
0: Hasaret (o) orvsza 0 mismateh sherna it | nmmmnns@e ShepeCiFrodiat
WV: IsDecaposéaRy iay Wl IFeShepehol WRA1 i viiete rwmf.ﬂbj (SITECF(SELFIRepresertation OIPYC ctReresentaion) = 1) XOR (STEDRSELFYF WekepeRpressriator

egaon=iz2 O mismatdh shema s 1.

A o bafnartraps - ShapeCimon:
o V3t 1 o o PALSE

1M: Dscamposes feShepRepresertation

IM: Hasassackions

[ZECF (SELF\iReprssertaon OPodh ifeprasentation]

DR (SIEDRELFY,

etz D sk shena s 1.1 icProd.etDefinitionchepe ShapeChProdit
B teobject |Where-ruke IfcShepafodel IWR1L & violats dtis FALSE: (SIZEC = 1) ¥OR. (SIZEDR(ELFYI, IfeShepeepr jon
5 CukctTae BaskWal 31A._21_Erqus 10 iy et (CPreo IDeftirreps ShapeCfProdst
- EDeckradsy cay Where Tl Icshepetodel W11 ol e s (SIZECF (SELF\liRepresertation OfProd riRegresentation) = 1) DR (SZEDFSELFYT fest o
[tat [oo cieintertepe - Shacerocet
WRIL B et eI FALSE.(SLZECE(ELRAp e ot PO, CRErssnition) = 1) XOR (SIZECREELFYY 1
I IsTypedBy (35ESE) ogrsgatrze o it szl -1 mmmv‘mnasw& Shapecirodet
Y. Dty (s,) Whererus 1o it s FALSE: (SIZECF (SELFIapresratlon Pk stfsprassntaton) = 1) XOR (STEDREELFY 1
H ieProduct e B monstn shema e 1 oo et thepe ShpectProies
p— Where Uk IfcShepahtodel WA L ks inleled, reouit is FALSE, (SIZEC = 1) Y0R (SIZEDREELFYI iesr
Lo d rorvoptinl i il Inouo.ndaiss
Mised rorvtonal b e U0 WDreRondin: st
e Whereruk CerrectPhysCrvit i viclaied, res itis FALSE: ((PhyskalCr D M. RelSpaaondary
esarirroptias S fa 401 WRMSpeonmy Rkt
a7 Msed rory optonal &b e Crveondian: bnrsonds
i Hlsats (o) Mioad rorvortonal b = Curwondin: IrnaBo.ndais
o Mised rorvoptonal Bt Dol InoBondnis
Msed rory ootonal &b e Cveondi: IneSonds
N Il eB St (8] ised rcrvotonal b s Curwonddin: InnaBo.ndeis
1M Inferteres Elernents. o) Missedrerroptical amib e CuvtondFiar Inatondies
10V HasPusecnces It Miced rorvoctonal i e Cveonddia: neSondas
o Retereestinocioes (8] isad rorvctional b s Cironddiin: oo
o s o _ |Mesnd rerv ol e Cirveoncion IneEondes
Mieed rorvotional i e Cuveonddia: nsSonds
0 BDrnecRedeste (8] ecirieroptieal amib e ZEM WDreSondtine osSonds
V. rondes Boundanes cay here e GomecthyACAT i vilted, res s FALSE: ((hyskalcr DT 2052 NeReSpeneo iy
oo cradror () o rorrapiins sl fa T WRdfesondey RaliculdngEkmet
i, estaran) Mised rorvoptonal it e I DreRoncePiae IS
|HV: HasDaverings oy + |Whereule TPHwerirt s viclated), reatis FALSE: ((Physkalcr AD(NOT(.. 23857 HcRelSpaceBondary v
Attributes {17 proparties {issues/”

[Reach

Figure 3 IFC Viewer screenshot Praha design in Autodesk Revit with 1518 identified issues.

&' LeD3 Rallwey gl LODs Jad3lfe

fodewer - o x

o View belp_Encoding

=@ Header nfo ~
5 ® et of Dusapticas
ImplamentaticaLavel = 1"
& Nama
@ TimeStamp = -12-03T08 4346 =
5@ Set of Authars
#-@ Set of Crganizations EEER
& Praprocessarversion = IFC Engine DLL version 1,03 bata
@ OriginatingSystem = 'IFC Engine DL versicn 1.03 beta'
& Ashcrization = The authedsing person
@ et of Filsschemas
 FleSthems = 1FC
B HePrejact Defactt Frject {Deserpion of Detsuit Prjact)
earnatry
@ feSte dassCyModalType ¢classCtyNodelType'y
gecmetry
% B Hchuilding 'bldg:Bullding' (dass:BuildingType’y
%8 lfcfuilding ‘bldg:Bullding’ (dassBuildingType'
=8 HfcBuilding ‘bldg:Bullding’ (dassBuildingType’y
qeameny
=B ffeBuildingSteray ‘Default Bullding Starey’ (Description ¢
aecmetr ¥
< s
Ve
762 =
eGemgpticEemst =
St BByl
#
TRt
4 Dascipton classTINRsleTyps
B HicObisctbefiniton
WV Hasasamaris (a)
AV Heste (o)
WV sty ta)
RV HasCortect (o)
1HV: IsDesomposadgy (o)
WV Bacompases (e
KV Hasissociatins (o)
B fcdbiest
& onpertipe
IV IDachredy (o)
(@) =
T
(a)
1NV Fisvoiss (o)
es— (o) =
tribtes (1€ Fropertes Jaeiesy
|Readh ']

Figure 4 IFC Viewer screenshot converted CityGML model without any identified issue.

D2.4: CHEK data validity-supporting tools

09/12/2024

CHEK - 101058559

Table 1: results of the EXPRESS validation

Model name Modelling software Identified
issues

Demo_Ascoli Piceno v1.ifc Revit 24.2.0.63 (ENU) - 107
IFC 24.2.0.49

413_AR_AP_510_2025_GAIA_MAB_V3_4.ifc | Autodesk Revit 25.1.0.44 (ENG) - | 753
IFC 25.1.0.44

Demo_Lisbon_Sept2024.ifc Autodesk Revit 24.2.20.41 (ENU) - | 1352
IFC 24.2.20.35

413_AR_AP_510_2025_PRAHA_GOA _V4_10. | Autodesk Revit 25.1.0.44 (ENG) - 1518

ifc IFC 25.1.0.44

LoD3_Railway.gml_LODs_lod3.ifc* CHEK CityGML/CityJSON to IFC 0

The EXPRESS Validation tool is available in any of the recent IFC Engine libraries:
https://rdf.bg/downloads-all/ifc-engine-downloads/

The following example (with Microsoft Visual Studio solution and source code) can be found here
https://rdf.bg/ifcviewer/ifcviewerpackage.zip

The API calls (see Figure 5) are available from here:
https://rdf.ba/ifcdoc/CP64/validateModel.html

D2.4: CHEK data validity-supporting tools

09/12/2024

https://rdf.bg/downloads-all/ifc-engine-downloads/
https://rdf.bg/ifcviewer/ifcviewerpackage.zip
https://rdf.bg/ifcdoc/CP64/validateModel.html

(V4 CHEK - 101058559

DIGITAL BUILDING PERMIT

" @ O [rdfbgfifcdor/CPed/validateMod: x 4 - =] X
<« C m (3 https//rdf bg/ifcdoc/CPe4/validateModel html A P a = B o
5 NetAllied Systems G.. [alignment_rework{1.. @8 curv [Newtab @ Kyxwercka ypeau-.. 0 Getting Started - Et.. (@) Hamepu Obnew P Roundcube Webmai... >
Instance Header A¥I Lalls . P
File 10 API Calls validateModel
Schema Reading API Calls
Instance Reading AP Calls Apply validation of a model
Instance Writing AP Calls
Controling API Calls Syntax
Uncategorized API Calls
Geometry Kernel related API Calls | C++32 bit C++ 64 bit C# 32 bit . C#ed bit
Deprecated API Calls (GENERIC) 4
Validation // Strong typing definition
validateSetOptions !
lidateGetOpti ValidationResults validateModel(
validatebetptions sdaiModel model
validateModel)
validatelnstance
validateFreeResults "
validateGetFirstissue /! Weak typing definition
validateGetNextlssue /!
void __declspec(dllexport) * _ stdcall validateModel(
validateGetStatus int_t model
validateGetlssueType);
validateGetinstance
validateGetinstanceRelated
validateGetEntity Property model
. Size: 64 bit / 8 byte (value)
validateGetAttr 299
validateGetAggrLevel
validateGetAggrindArray
validateGetlssuelevel
! o Example (based on pure API calls)
validateGetDescription
Deprecated API Calls (GEOMETRY) Here you can find code snippits that show how the AP call validateModel can be used
C++ 32 bit C++ 64 bit ‘ C# 32 bit C# 64 bit
#include "./include/ifcengine.h"
#include <assert.h>
void UsageExample(
SdaiModel model
)
{
/I set options if needed
validateSetOptions(
le, // limit validation processing to work for 1@ seconds
108, // limit validation processing to find 100 issues
e,
enum_validation_type:: WHERE RULE // exclude where rules check
B
ValidationResults results = validateModel(model);
for (ValidationIssue issue = validateGetFirstIssue(results); issue; issue = validateGetMextTssue(issue))
SdaiInstance inst = validateGetInstance(issue);
const char * desc = validateGetDescriptien(issue);
)]
if (validateGetStatus(results)l=enum_validation_status::_ COMPLETE_ALL) {
printf("There may be more issues, increase limits\n");
}
validateFreeResults(results);
}

Figure 5 API of the IFC Engine library used for EXPRESS (ISO 10303-11) validation.

3.3 IDS 1.0 Validation

The selection of the Information Delivery Specification (IDS) 1.0 as the open standard to store machine interpretable
requirements modelling had a long history. As mentioned before, originally mvdXML was foreseen as being the open
standard for storing requirements modelling (D2.2), this was changed into using IDS as mvdXML was deprecated.

D2.4: CHEK data validity-supporting tools

09/12/2024

(V4 CHEK - 101058559

IDS is quite new, and the first official version was not released before the delivery deadline of the CHEK IFC format
(D2.2). This was due to a longer and more rigid standardization process than expected. However, the official release
fell before the deadline of Task 2.5. Finalization of the IDS validation tool is according to the IDS1.0 official release.
Due to ongoing development in the way rules and regulations are defined, digitalized and checked, the CHEK IFC
(D2.2) format itself is also still progressing. This allowed the IDS per municipality to be updated to the official IDS 1.0
schema as well.

' Demo Ascol Plosna v ifc- foviswer - o x
Fils Visw Help Encoding

&0 FebuildngSterey ‘Level &
W15 Check Reaults o x

Ramult FALL

<ERROR stepld =112 CHEK_cormmen
Tratznce chss ot math specifcatien
<fERROR>
<ERROR. shapld=1#112' speccation=Tah building shoud have CHER_sormman Heighk property'>
ot matih spacifiaticn

id-#112 CHEK_cormmer I<C Froper

rE

112
hes ot matth specificabcn
o 1 TeWall Basie Wall W 32:431868
a1 AWl Basic Wall EW 32:431870

ciiation=Exd < Peet Bildinglse erketSuoate
s ot it spacifiaien

116 specicztion="Each buling Storey sho i e CHEK_conmor (sCormesLlding property >
Vi Span
ass -)
Teva hir=Each bldig skrsy sheid havs CHEK._soeamcr [sCoermeBuding property'
h specieakn

10 TOSAHAHPIC A 423 spalfcabion="Each bulldig slorey shodld have CHEK_conmonSCormerBlding property >

na <z ot matth spacifiaticn

B R EW G243 aticn~Exh bullding storey shouid have CHEK_pormon [sComerBull g proparty >
e spacifcation

451" spacification=Each blding storsy shoid hsve CHEK,_coamcn SCormerBlding property >
hesrat math

epecificoton

135 specificabion="Each bl storey shoud hiwe CHEK_conmen SCormerBlding mroperty >
ches ot matih spacificaticn

aticn=TExh building storey shedd have CHEK_sonnicr [sComerBuilding property'>
o speciotn

78 et CHEK s o repertys
Tratance chss ot mauh specificaben

s soudd have CHEK ‘g preparty>
Tretzrce chss ot math spacificabcn

(s sy
tradsen,)

<ERROR spld="#5 217" CHEK frepaty's

Iratance chss ot math specifcabion

<ERRCR: shapld =452 sroudd have CHEX g prepaty>
Iratznce ches ot matih spacificaicn

pazs
=
@)

#5252 CHEK ereparty'
Iratznc ches ot matih spacificaticn
<ERRCE>
ERRDR spacification =20 level spare borviies req s
e specifiaion ever mah
</ERROR>

REERY

¥ show cnly erors ek]

Figure 6 IFC Viewer screenshot IDS Validation in Ascoli Piceno model.

The IDS Validation tool has proven to be a multifunctional tool. It helped a lot during the development phase of both
the IFC exporter (see section 4) and of the IDS itself. Outside of development support it will also play a crucial role
when submitting an IFC model to a municipality. Here it has to be decided whether the information offered by the
designer is complete enough to make the next step in the process. Finding the right place for the IDS validation tool in
the to-be DBP process (D1.1.) is complicated. For IFC exporting tools like the one DiRoots is developing (adding on-
the-fly relevant data to IFC given a certain IDS file on IFC export in Revit or ArchiCAD, see also Chapter 4) generates
correct output. Even if the IFC file is incorrect or incomplete it is the question of whether the designer should be informed
as he/she will most likely not be able to fix potential issues. These issues are often created outside of control of the
file's author. Next to that, in many use cases users are aware that they generate IFC files that are invalid against CHEK
IFC for the IDS part as these data are simply not yet available. Running the rule checking with incomplete data can still
be relevantin generating valuable feedback. One place where it definitely can serve is the acceptance for municipalities
of uploaded IFC files.

The results can be seen in Table 2 and Figure 6. The complete source code for the IDS validation itself (based on an
SDAI API) can be downloaded from a public GitHub page:

https://github.com/I-Sokolov/RDFApps/tree/main/IDSChecker

D2.4: CHEK data validity-supporting tools

09/12/2024

https://github.com/I-Sokolov/RDFApps/tree/main/IDSChecker

CHEK - 101058559

Table 2: results of the IDS validation

Model name IDS file IDS 1.0 issues
Demo_Ascoli Piceno v1.ifc CHEK _Ascoli_Piceno.ids 18
413_AR_AP_510_2025_GAIA_MAB_V3_4.ifc CHEK_GAIA.ids 27
Demo_Lisbon_Sept2024.ifc CHEK_Lisbon.ids 59
413_AR_AP_510_2025_PRAHA_GOA_V4_10.iffc | CHEK_Prague.ids 128

The Property Set Definition (PSD) format is fairly unknown, this does not make it trivial. The CHEK IFC specification is
not only defined by its schema (i.e., modelled as ISO 10303-11 as explained above), but it also exists of a large set of
property-sets (PSet) and properties. They can be defined in PSD format. The CHEK IFC format defines custom PSets
which can also be defined in the PSD format; this is what is done for CHEK IFC.

The results can be seen in Table 3 and Figure 7. The complete source code for the PSD validation itself (based on an
SDAI API) can be downloaded from a public GitHub page:

https://github.com/I-Sokolov/RDF Apps/tree/main/PSDChecker

knowledge available within PSD for the custom property-set can be defined in IDS 1.0 at the moment. Within each IFC
file available issues have been identified; however these issues are relevant, there is not a lot the designers can do to
prevent them. The current state of the IDS standard allows to cover all relevant information as can be stored in PSD to
be embedded within the IDS file itself; for the example cases this is done. This means PSD validation finds additional
issues within the developed IFC files that in principle could be identified as issues in the CAD solution used. The
relevance of these issues should be identified by WP4 as these issues represent actual missing semantical knowledge
that potentially could be expected when executing rule calculations.

D2.4: CHEK data validity-supporting tools

09/12/2024

https://github.com/I-Sokolov/RDFApps/tree/main/PSDChecker

(V4 CHEK - 101058559

DIGITAL BUILDING PERMIT

348 a|
MeGeagzphicElznient

oFamy

AR_pSTILETI

Tapasci S8k topogréfion 1

ta)

fwarzia There ar o

R progerty near 5 i
“Taposclid S8k tapogr| | ERRGR Progsr inataroe: #101 ook Ty
@) ERRCR, Proparty inctaree; 21 o
ta) R broper ¥ ¥
i EEe ner et
(FReae,) EERCR Progerty nelree: #2251 e e

EERGR proper 2 3 o
T R Propety o e i et 725 T
: R s 3 ; e
Fans ERROR Property instaroe: _SpensHeater T,
tay Erca e #554 ST M- o)

o = o : &l
— ERRCR Property set Sporshedar TypeC 204 =csgera(il)
= G et 37 g ' rosgzs)
@) ERRCR Property W tor Foss)
(@) ERRGR inetarea:
ta)
(a)
ta)
ta)
(o)
(@)] ’
@) [a'
frate [o= |
(@) T
[Rezadly

Figure 7 IFC Viewer screenshot PSD Validation in GAIA model.

Table 3: results of the PSD validation

Model name Modelling software PSD issues
Demo_Ascoli Piceno v1.ifc Revit 24.2.0.63 (ENU) - 803

IFC 24.2.0.49
413_AR_AP_510_2025_GAIA_MAB_V3_4.ifc Autodesk Revit 25.1.0.44 (ENG) - | 18

IFC 25.1.0.44
Demo_Lisbon_Sept2024.ifc Autodesk Revit 24.2.20.41 (ENU) | 49

IFC 24.2.20.35
413_AR_AP_510_2025_PRAHA_GOA_V4_10.ifc | Autodesk Revit 25.1.0.44 (ENG) - | 134

IFC 25.1.0.44

D2.4: CHEK data validity-supporting tools

09/12/2024

CHEK - 101058559

There are several Micro-Services developed as part of the toolkit and each of them can be used to enrich an existing
IFC model (potentially to make it from CHEK IFC invalid into CHEK IFC valid) or to validate numerical values defined
by architects to be close to the truth given the geometry that can be interpreted.

Each Micro-Service can be seen as an implementation of a small algorithm and understanding of how its relevant data
is translated in the IFC format (i.e., in our case IFC4 ADD2 TC1).

Each tool is offered as a CLA (Command Line Application) with under Windows a simple .exe and .bat to be executed.

There are no micro-services covering validation. The question is if these are needed at all in the current process, the
typical information that could be validated is something that can be and is calculated within applications like Veerify3D
and CYPE Urban anyway.

If one thing, the validation tooling for CHEK IFC shows that a complete and 100% correct IFC file cannot be expected
from practice at the moment. This is expected to be solved once more tools become available that support the most
recent version of the ISO IFC standard. An important future step for CHEK IFC will be to follow IFC4.3 ADD2 (as the
most recent official ISO version). For the validation tooling this will not change much as the tools are independent of
the selected IFC version and will also work out-of-the-box for newer versions of IFC (except for IFC5 as this will follow
a different technology).

It is expected that IDS 1.0 validation will be adjusted. The standard is very new, and it is expected that the current
software contains bugs that were not identified during the development and use till now.

It is also expected that PSD validation will become less relevant as definition of new Property Sets as can be defined
in PSD can also be defined in IDS.

D2.4: CHEK data validity-supporting tools

09/12/2024

(V4 CHEK - 101058559

DIGITAL BUILDING PERMIT

4. IFC Exporter

4.1 General description

The CHEK IFC Exporter tools that have been developed for Autodesk Revit (version 2022 to 2025) and Graphisoft
ArchiCAD (v27) enhance the integration of IDS requirements for the IFC exports within BIM authoring software. The
tools simplify populating data based on IDS requirements and streamline the IFC export workflow by allowing users to
configure IDS settings and efficiently map necessary IFC data.

2, Profile |<Default> 57 [E [@ @” g‘@@
Select IDS: Lisboa DS v

v CHEK IFC Exporter

(@ Whole Model (O) Active View

Map Parameters |

‘ Search... Q2 ‘
IDS file Requirement Revit

Id IFC Entity IFC Property Set IFC Property Revit element Revit Parameter

1 ’ IFCWALL Pset_WallCommon * IsExternal . Wall [<Default> 574 J@
2 IFCBUILDING CHEK_common TypeOfConstruction Project Information L v W@
3 IFCBUILDING CHEK_common Height Project Information (v 8
4 IFCBUILDING CHEK_common IsCornerBuilding Project Information [£ J@
5 IFCBUILDING CHEK_common NumberofBuildingLevels Project Information ‘ e }@
6 IFCBUILDING Pset_BuildingUse MarketCategory Project Information [<Default> v]@
7 IFCBUILDING Pset_BuildingUse MarketSubCategory Project Information { <Default> v ‘@
8 IFCROOF CHEK_common RoofAngle Roofs { S }@

<IFC4 Reference View [Building Service] Setup> ~] Output Folder Path: | C:\Users\XXXX\OneDrive - DiRoots Limited\Documents m

Select IFC Setup Base:
Powered by DIRGCYS. Exporter supports IFC schema version 4 and MVD
Reference view as setup base. Export IFC

Figure 8 User Interface of Chek IFC exporter

D2.4: CHEK data validity-supporting tools

09/12/2024

CHEK - 101058559

the following describes the workflow including features that the application handles.

Selecting the IDS File

Within the main interface of the Autodesk Revit plugin, located under the CHEK tab, users can select from predefined
IDS files such as 'Ascoli Piceno', 'Prague’, 'Lisbon’, and 'Vila Nova de Gaia'. An IDS is available for each municipality
which contains the information requirements for each category of checks within the CHEK scope (D2.1). The possibility
to select one of the predefined IDS files ensures that appropriate IDS requirements are applied during the IFC export
process.

Exporting to IFC (IDS-based Exporter)

The exporter assists users in generating IFC models that align with IDS requirements as defined by CHEK (D2.2). It
supports IFC schema version 4 and utilizes the Model View Definition (MVD) Reference View as the base for export
setups. While it enhances compliance with IDS specifications, full compliance is not guaranteed due to reliance on the
core Autodesk Revit IFC exporter and Graphisoft ArchiCAD exporter. Full compliance before exporting is not
guaranteed. The output IFC file will need to be validated by the IFC validator tools (described in section 3) to check if
the user correctly mapped the information and if the authoring software exported the IFC file without mistakes.

Mapping the Properties & Custom Properties Mapping

Users can map user-defined properties from the IDS file to Revit parameters, ensuring custom data are accurately
represented in the IFC export. In Figure 4, the selected IDS file shows some custom properties defined with the name
of ‘CHEK_common’.

Predefined IFC Properties Mapping
The tool displays predefined IfcProperties (prefixed with 'Pset_') from the IFC schema. Users can map these to
compatible Revit parameters, with options to set default mappings for efficiency.

Selecting Additional Configuration
Users can customize their IFC settings based on their requirements, using their configurations and applying changes
on top of the existing IFC export setups. This provides flexibility and control over the export process.

Exportation Process
After configurations are set, users can choose to export either the active view or the entire model, accommodating
different project needs and workflow preferences.

Refresh and Profile Features
For Revit the tool allows users to make changes and reload the plugin to update data seamlessly. The profile feature
stores Ul-related information, reducing repetitive data entry and enhancing efficiency.

D2.4: CHEK data validity-supporting tools

09/12/2024

CHEK - 101058559

Enhanced compliance with IDS defined CHEK requirements

By facilitating the mapping of both custom and predefined properties, the tools improve the accuracy of data
representation in IFC exports, ensuring better compliance with IDS defined CHEK requirements and enhancing
interoperability in BIM based CHEK workflows.

Improved user experience
The intuitive interface and features like default mappings and profile storage simplify the workflow, making the tool
more accessible and reducing the learning curve for new users.

Increased efficiency and flexibility
Customizable configurations and the ability to build upon existing export setups allow users to tailor the export process
to their specific needs, saving time and reducing potential errors.

Seamless integration with authoring software
The tools integrate smoothly with Revit and Archicad, enabling users to maintain their existing workflows while
benefiting from enhanced export capabilities.

The Chek IFC Exporter tools significantly improve the process of exporting IFC files with IDS defined CHEK
requirements. They offer a more efficient, accurate, and flexible solution within BIM workflows, enhancing data integrity
and supporting industry-standard practices.

D2.4: CHEK data validity-supporting tools

09/12/2024

CHEK - 101058559

The CityGML / CityJSON validator is a standalone application that can be used to validate the presence and
characteristics of city objects in a set of CityGML and/or CityJSON files, as well as the correctness of the geometry
primitives employed in them. The general operation workflow can be found in Figure 9. This workflow can be split in
two different data aspects:

Data requirements (i.e., compliance / completeness checking), in which the input documents are first converted into
semantic data in Resource Description Framework (RDF)' format after which they are validated according to a
predefined requirements profile.

3D Geometry validation, using the val3dity? tool developed by TU Delft (see section 5.3).

Transforming the input data into semantic format provides several benefits that are essential to the workflow followed
by the application:

Semantic models allow linking and merging of data from diverse sources by focusing on the underlying concepts rather
than their physical representation. This capability is essential for workflows like digital building permits where there
may be many heterogeneous sources of data, but commonality in the concepts and rules apply.

Different types of inputs can be supported by semantic models with minor changes in the application, since the only
requirement is that the necessary elements are converted into an RDF graph using the concepts required for permit
checking.

Because all inputs are merged into a single RDF graph, validations can be performed not only across objects, but also
across different datasets. These datasets are not required to have the same source datatype, the validation will also
function across different dataset types (e.g., CityJSON and INSPIRE).

Well-known ontologies are employed whenever possible, which means that other semantic consumers can also
understand and leverage the data and metadata employed by the application (input datasets, profiles, etc.). A
normative RDF representation of the CityGML data model in development will enhance this when available, the initial
target RDF model for city data and the SHACL shapes used for validation could be easily adapted to it.

The rules used in the semantic models can be written using widely employed semantic web standards.

More information on how semantic technologies are leveraged can be found in section 5.4.

The validator accepts input data in both CityGML and CityJSON format, with the former being transformed into the
latter using the citygml-tools3 library before performing the semantic conversion. Additionally, the validator accepts
parameters that may have been defined in the requirements profile, e.g., building or location of interest. The profiles
that are used by the validator will specify the input parameters necessary to target validation to the correct elements in
the source data. This simplifies the problem of describing validation for all possible source data formats by focusing on
specific elements. Once the validation has finished, a report is generated in JSON format. This is a standard format
that can be easily used by client applications (through standard browser supported CSS style sheets) to display the
validation errors that could have been encountered in the documents. For example, a 3D CityJSON viewer could run

" https://www.w3.org/RDF/

2 https://qithub.com/tudelft3d/val3dity

3 https://github.com/citygml4;/citygml-tools
D2.4: CHEK data validity-supporting tools

09/12/2024

https://www.w3.org/RDF/
https://github.com/tudelft3d/val3dity
https://github.com/citygml4j/citygml-tools

(V4 CHEK - 101058559

a validation job on a given dataset and highlight any problematic objects visually, whether they relate to non-compliance
with data requirements or to incorrect geometry primitives.

CityJSON
dataset

Values for
variables /
placeholders

Profiles can be
parameterizable

Semantic RDF
Uplift datasets

1 SHACL Validation

validation report

o val3dity

! Human-readable |
| data requirements L
I (e.g.webUl) |

|

|
L -
~ ST T T

- 7 N
| | Profile
definition

(RDF)

Translation to
SHACL
shapes

——

Store & Publish

CityGML|/ CityJSON data requirements and geometry validator

—
OGC Lookup—/
RAINBOW

Figure 9 General operation workflow for the CityGML / CityJSON validator

The source code of the application is published on GitHub at the following URL, which also contains up-to-date
documentation on the use of the service (including how to run it as a Docker container):

https://github.com/ogcincubator/chek-data-completeness.

D2.4: CHEK data validity-supporting tools

09/12/2024

https://github.com/ogcincubator/chek-data-completeness

CHEK - 101058559

While the input datasets and the rule collections bundled with the application are specific to CHEK, the overall
methodology can be extended to support a wide array of use cases. For instance, profiles with additional checks, other
than data requirements validation, can be created and used. Additionally, the semantic uplift of the input data could
also be modified or enhanced to support other types of formats besides CityJSON, leveraging the constraint definition
and checking capabilities offered by semantic technologies.

The validation tool is offered as a web application, compliant with the OGC API — Processes* standard developed by
the Open Geospatial Consortium. It is also packaged as a Docker? image for convenience, making it easier for users,
software vendors, or system administrators to integrate in their environments.

By offering a standard, JSON-based OGC API — Processes interface, the application can be easily integrated with
other tools and libraries. A user-friendly HTML interface is also available, see Figure 10, allowing the tool to be used
as a standalone application. The validation results being displayed at the bottom once the validation is finished.

This means that the application supports two different use patterns:

As a web application through which users can upload their datasets and validate them against a set of rule collections
(profiles)

As a service that can be integrated in third-party tools. For example, a Revit plugin could execute validation jobs on a
given dataset.

The flexibility offered by this integration architecture means that the validator can be used outside of the CHEK workflow
(e.g., by municipalities that wish to check the completeness of their datasets), or embedded in it (e.g., invoked by
another application in the pipeline).

A set of default, sample profiles is bundled with the application, but the profiles can also be fetched from other data
sources, such as the OGC RAINBOWS instance where the CHEK Project profiles (which are currently under
development) are to be hosted.

4 https://ogcapi.ogc.org/processes/

5 https://www.docker.com/

6 https://defs.opengis.net/vocprez/
D2.4: CHEK data validity-supporting tools

09/12/2024

https://ogcapi.ogc.org/processes/
https://www.docker.com/
https://defs.opengis.net/vocprez/

(V4 CHEK - 101058559

CHEK data completeness validator

Backend service

Service URL

http://localhost:8000/ Edit Reload

Validation data

Select a profile for validation

Ascoli Piceno profile for CHEK (chek-ascoli-piceno) v

General profile for the city of Ascoli Piceno
File to validate

Examinar.. sample.city.json

File to validate

Examinar... No se ha seleccionado ningtin archivo.

Parameters
buildingOfinterest *
ID_04030100_619

Identifier for the building of interest

Validate

Figure 10 Look and feel of the HTML interface

5.3 Geometry validation

The CityJSON validator has the capability to check the geometry of the objects that are present in the input files. The
validator utilizes the tool val3dity for this. This is an open-source geometry validator that has been developed by the
TU Delft prior to the CHEK project. Its development has not been part of the CHEK project and due to this it does not
take a central role within D2.4 nor the architecture of this validator. However, it demonstrates the extend of the solution,
and since the geometry validation is done by val3dity, its functioning will be covered at a surface level.

Val3dity validates 3D primitives according to ISO19107. It supports the use of MultiSurface, CompositeSurface, Solid,
MultiSolid and CompositeSolid geometry. The geometry validator supports inner rings and cavities. It does, however,

D2.4: CHEK data validity-supporting tools

09/12/2024

CHEK - 101058559

not support parametrically modelled primitives, such as curved edges and dome shaped surfaces. CityJSON supports
this neither, so this is not seen as a significant issue.

CompositeSolid\

Solid & MultiSolid)
I
CompositeSurface

MultiSurface\

-

—

LinearRing level

101 TOO_FEW_POINTS
102 CONSECUTIVE_POINTS_SAME
103 RING_NOT_CLOSED

104 RING_SELF_INTERSECTION CityGML Objects

A\ A/

R 601 BUILDINGPARTS_OVERLAP

fPolygon level

201 INTERSECTION_RINGS

202 DUPLICATED_RINGS

203 NON_PLANAR_POLYGON_DISTANCE_PLANE _
204 NON_PLANAR_POLYGON_NORMALS_DEVIATION A
205 POLYGON_INTERIOR_DISCONNECTED IndoorGML Objects
206 INNER_RING_OUTSIDE
207 INNER_RINGS_NESTED 701 PRIMAL_CELLS_OVERLAP

208 ORIENTATION_RINGS_SAME 702 DUAL_VERTEX_OUTSIDE_PRIMAL_CELL

- / 703 PRIMAL_DUAL_XLINKS_ERROR

| J 704 PRIMAL_DUAL_ADJACENCIES_INCONSISTENT

-
Shell level

I [>

300 NOT_VALID_2-MANIFOLD - ~
301 TOO_FEW_POLYGONS | not possible for Others
302 SHELL_NOT_CLOSED | CompositeSurface
303 NON_MANIFOLD_CASE

305 MULTIPLE_CONNECTED_COMPONENTS gg; éﬁ‘;#??é:i?}g?“
306 SHELL_SELF_INTERSECTION -

903 WRONG_INPUT_PARAMETERS
L 307 POLYGON_WRONG_ORIENTATION 3 904 FORMAT _NOT_SUPPORTED

905 INVALID_JSON
~ - 906 PRIMITIVE_NO_GEOMETRY
999 UNKNOWN_ERROR

(Solid level L J

481 INTERSECTION_SHELLS

402 DUPLICATED_SHELLS

403 INNER_SHELL_OUTSIDE

484 SOLID_INTERIOR_DISCONNECTED
405 WRONG_ORIENTATION_SHELL

Solid interactions level

581 INTERSECTION_SOLIDS
582 DUPLICATED_SOLIDS
563 DISCONNECTED_SOLIDS

L /

L J
Figure 11 Issues that val3dity is able to detect

Issues that the geometry validator encounters are clearly structured and replied back to the user via a report. Figure
11 shows a clear overview of the issues that the geometry validator can encounter. The error code list in this figure
does also give a good overview of the different sorts of validations that are executed. These error codes are not only
D2.4: CHEK data validity-supporting tools

09/12/2024

CHEK - 101058559

errors, but they also include some warnings. For example, 102 CONSECUTIVE_POINTS_SAME, does usually not
cause terminal errors in downstream applications, but it is good practice to resolve the cause.

The tool does come with some limitations, the major one is the limited overlap/intersection validation between different
objects. The tool primarily validates the geometric representations as single objects. If for example two different building
representations intersect with each other it will not be noted by the geometry validator. The only exception for this is
CityJSON objects of type "Building” that have child objects of type “BuildingPart”. For the BuildingPart representations
it is validated if they overlap/intersect.

This means that geometry validation only guarantees that the geometry itself is valid, but not that the city model is
without geometric issues. E.g. buildings could still intersect with each other and/or the ground plane. However, the
downstream application that are utilizing the CHEK CityJSON files can assume all the geometry to adhere to ISO19107
if no issues were encountered by the geometry validator.

Semantic and Linked Data technologies and standards that provide a flexible core for the requirements validator, the
most relevant of which is the Resource Description Framework (RDF). RDF can be used for describing “resources”,
which can be anything ranging from physical things, to documents, to abstract concepts (e.g., “a chair’, “The

Adventures of Huckleberry Finn”, “a trip to Las Vegas” or “technology”), by using a collection of simple subject-
predicate-object statements (also called triples):

The subject: a resource or entity for which something is being described.
The predicate: the relationship between the subject and the object.
The object: the target or the value for the relationship.

For example, the sentence “Alejandro works for the OGC” can be represented in RDF with the entity “Alejandro” as the
subject, the property “is employed by” as the predicate, and the “OGC” as the object. A collection of such triples can
be thought of as a directed graph.

Input city data, in various formats, is first converted into a common, standardized semantic format using such
assertions, and merged into a single graph. This is achieved through a process called “semantic uplift’, which entails
targeting relevant elements of the source data, converting to a simplified JSON format, and using JSON-LD to
semantically “annotate” the resources to build the necessary relationships (triples). This is a multi-step process, but
maximises both flexibility and use of standards, and is far easier to maintain, extend and re-use than more typical
custom code approaches. This enables validation to be carried out not only within the context of a single CityGML /
CityJSON file, but across a whole dataset composed of several documents. Thus, validation rules can be standalone
(i.e., affecting only one single dataset or city object) or complex (i.e., affecting city objects contained in different
datasets).

D2.4: CHEK data validity-supporting tools

09/12/2024

(V4 CHEK - 101058559

:BuildingOfInterestRequirements
a sh:NodeShape ;
sh:targetNode chek:document ;
sh:sparql [
sh:prefixes ex: ;
sh:select """
SELECT ?buildingOfInterest (?value as ?path) ?value ?req WHERE {
?building0fInterestParam a sd:Parameter ;
dct:identifier "buildingOfInterest" ;
sd:hasFixedValue ?buildingOfInterestValue ;

?dataset city:hasObject ?buildingOfInterest .
?building0fInterest dct:identifier ?buildingOfInterestValue .
{

FILTER NOT EXISTS {
?building0fInterest city:hasGeometry ?geometry .
?geometry city:hasSurface/rdf:type city:RoofSurface ;
city:lod ?lod .
FILTER(REGEX(?lod, "~[23].%"))
}
BIND(city:RoofSurface as ?value)
BIND("RoofSurface with LoD 2+" as ?req)
} UNION {
FILTER NOT EXISTS {
?building0fInterest city:hasGeometry ?geometry .
?geometry city:hasSurface/rdf:type city:WallSurface ;
city:lod ?lod .
FILTER(REGEX(?lod, "~[34].[1-4]"))
}
BIND(city:WallSurface as ?value)
BIND("WallSurface with LoD 3.1+" as ?req)
} UNION {
FILTER NOT EXISTS {
?building0fInterest city:hasGeometry/city:hasSurface ?surface .
?surface a city:WallSurface ;
attr:hasWindows ?hasWindows .
FILTER(?hasWindows IN (1, "true", true))
}
BIND(city:WallSurface as ?value)
BIND("WallSurface with attribute hasWindows = true or 1" as ?req)
1
1
1
sh:message "Building of interest does not satisfy requirement: {?req}" ;
sh:severity sh:Violation ;

Figure 12 Sample SHACL shape for a data requirements rule in RDF Turtle format

Once the diverse forms of (relevant) city data is available using standard-based models in RDF graphs they can be
validated using available standards and tools, in particular the Shapes Constraint Language (SHACL)?, developed by
the World Wide Web Consortium. Each validation rule can be mapped to one or more SHACL shapes with varying

7 https://www.w3.0rg/TR/shacl/
D2.4: CHEK data validity-supporting tools

09/12/2024

https://www.w3.org/TR/shacl/

(V4 CHEK - 101058559

DIGITAL BUILDING PERMIT

complexity. The shapes can even be defined by using SPARQLS, a semantic query language for RDF graphs similar
to the Structured Query Language (SQL) used in relational databases. An example of a shape that validates the
presence and several additional aspects of a given building is shown on Figure 12

5.5 Data models

5.5.1 Profile definition

Data requirement profiles are defined using the RDF Profiles Vocabulary® to describe their metadata, and a collection
of SHACL shapes containing the actual checks to be performed. Other vocabularies are used for metadata properties,
such as the Dublin Core Metadata Initiative (DCMI) Metadata Terms'? for commonly used properties, or the Software
Description Ontology* and the Hydra Core Vocabulary'2 for the profile input parameters. A sample profile definition,
in RDF Turtle format, and with the core metadata items supported by the application, a SHACL shapes artifact (i.e.,
document containing the actual shapes), and a single optional input parameter (“myParameter”), can be seen in Figure
13.

@prefix chekp: <urn:chek:profiles/> .

@prefix prof: <http://www.w3.org/ns/dx/prof/> .
@prefix dct: <http://purl.org/dc/terms/> .

@prefix role: <http://www.w3.org/ns/dx/prof/role/> .
@prefix sd: <https://w3id.org/okn/o/sd#> .

@prefix hydra: <http://www.w3.org/ns/hydra/cores#> .

chekp:sample a prof:Profile, chekp:Profile ;
dct:title "Sample profile for CHEK" ;
dct:hasVersion "0.1" ;
prof:isProfile0f chekp:chek ;
prof:hasToken "chek-ascoli-piceno" ;
prof:hasResource [
a prof:ResourceDescriptior ;
prof:hasRole role:validation ;
dct:format <https://w3id.org/mediatype/text/turtle> ;
dct:conformsTo <https://www.w3.org/TR/shacl/> ;
prof:hasArtifact <./ap-shapes.shacl> ;

Only instances of checkp:Profile are processed, so this is required
A title for the profile

Profile version

prof:isProfile of can be used for declaring inheritance

A token is required and will be used to identify the profile

At least one resource must be described

T W W W W R

The role must be role:validation

Optional

Conforming to https://www.w3.org/TR/shacl/ is *mandatory*
Path or URL to SHACL shapes file

I 3 " I

]

H
sd:hasParameter [# Zero or more parameters can also be declared

dct:identifier "myParameter" ; # Identifier that will be used when running validations
dct:description "Sample argument” ; # An optional description for the parameter
sd:hasDataType "string" ; # Data type of the parameter

hydra:required false ; # Whether the parameter is required (true) or optional (false)

Figure 13 Sample metadata definition for a data requirements profile

8 https://www.w3.0rg/TR/sparql11-query/

9 https://www.w3.org/TR/dx-prof/

10 https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
" https://w3id.org/okn/o/sd

12 https://lwww.hydra-cg.com/spec/latest/core/

D2.4: CHEK data validity-supporting tools

09/12/2024

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/dx-prof/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://w3id.org/okn/o/sd
https://www.hydra-cg.com/spec/latest/core/

CHEK - 101058559

Any SHACL shapes used in the validator must be tailored to the specific “City RDF” model employed by the application.
Given that no standard RDF ontology exists for the CityGML (or CityJSON) conceptual / data models, a custom target
RDF model is used. The following is a summary of the data conversion workflow, also depicted in Figure 14 follows:

If the input document is in CityGML format, convert to CityJSON using citygml-tools.

‘@id” fields, which will be later used as RDF resource identifiers (URIs) are added to all city objects.
The semantics of the geometric primitives are unrolled to shape them in a graph-compatible format.
All geometries are converted to the TopoFeature™ representation format.

Vertices are also converted to TopoFeature, and their coordinates represented as individual properties.
JSON-LD15 context is added to the document to semantically enable it.

The resulting document is an RDF graph to which the validation SHACL shapes can be applied to.

The full semantic uplift definition document that implements this workflow can be found at;

https://github.com/ogcincubator/chek-data-completeness/blob/master/data/cityjson-uplift.yml.

Input . Add RDF Add
document @ Nop- CityJSON data — | @idstocity Proc_:ess L ol 1s0N-LD
> vertices
objects context

| l
Y

Convert to Unroll Geometries "City RDF"
CityJSON geometry - o Document
semantics TopoFeature

Figure 14 Semantic uplift workflow for CityGML / CityJSON data

In general terms, for a standard CityJSON document, the resulting RDF graph has the following characteristics

A Uniform Resource Names (URN) namespace is defined for the document, which will be used as the base Uniform
Resource Identifier (URI) for all the RDF resources in it.
A resource of type city: City is created for the document.

A resource is created for each city object, setting its type to city:X, where X is the type of CityJSON object (Building,
BuildingPart, Road, etc.). Each city object is assigned a unique URI generated from their “id”; the object “id” is kept,
verbatim, in a dct:identifier predicate. A city:hasObject relationship is established between the city:City and each object
resource.

A resource is created for each vertex, with an individual URI assign to it. The type of each of these vertices is set to
geojson:Feature. Each vertex contains a city:geometry whose value is a blank node with type cityjson:Point and an

13 https://www.cityjson.org/specs/2.0.1/#semantics-of-geometric-primitives
14 https://ogcincubator.github.io/topo-feature/

15 https://json-Id.org/
D2.4: CHEK data validity-supporting tools

09/12/2024

https://github.com/ogcincubator/chek-data-completeness/blob/master/data/cityjson-uplift.yml
https://www.cityjson.org/specs/2.0.1/#semantics-of-geometric-primitives
https://ogcincubator.github.io/topo-feature/
https://json-ld.org/

CHEK - 101058559

RDF list of the vertex coordinates using a geojson:coordinates predicate. A city:hasVertex relationship is established
between the city:City and each vertex resource.

The “transform” object is converted into a blank node with city:scale and city:translate predicates for the scale and
translate properties, respectively, each in turn containing city:x, city:y and city:z predicates corresponding to their
values. This transform object is bound to the city:City by city:hasTransform.

Each city object can have a city:hasGeometry predicate with one or more geometry objects. A geometry object has a
city:lod predicate for its Level of Detail (LoD), and a city:hasSurface to represent its surface.

Surfaces have a GML type from the GML ontology (e.g., http://www.opengis.net/ont/gmi#MultiSurface), and a
city:boundaries relationship to a TopoFeature resource describing the surface boundaries. To that end, the nested
boundary arrays used in CityJSON are converted into a TopoFeature geometry hierarchy (e.g., MultiSurface >
Polyhedron - MultiPolygon > ...), in which each level is bound to the next through geojson:relatedFeatures.
geojson:relatedFeatures is also employed to link each primitive to a list of its coordinates (vertex objects as described
above).

Attributes are preserved with their names but using the attr: namespace (e.g., “hasWindows” > attr:hasWindows),
bound to the objects that contains them.

“city:” refers to the *http://example.com/vocab/city/” URI namespace “geojson:” to the URI namespace for
https://purl.org/geojson/vocab# “dct.” to “http://purl.org/dc/terms/” “attr:” to http://example.com/vocab/city/attr#

A (simplified) sample CityJSON document converted in RDF/Turtle can be found in Figure 15

D2.4: CHEK data validity-supporting tools

09/12/2024

http://www.opengis.net/ont/gml#MultiSurface
http://example.com/vocab/city/
https://purl.org/geojson/vocab
http://example.com/vocab/city/attr

CHEK - 101058559

@prefix c: <https://example.com/city-topo-feature#> .
@prefix city: <http://example.com/vocab/city/> .

@prefix dct: <http://purl.org/dc/terms/> .

@prefix geojson: <https://purl.org/geojson/vocab#> .
@prefix gml: <http://www.opengis.net/ont/gml#> .

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

c:city a city:City ;
city:geographicalExtent [city:max [city:x 1.0 ;
city:y 1.0 ;
city:z 1.0] ;
city:min [city:x @.0 ;
city:y ©.0 ;
city:z @.e 1 1 ;
city:hasExtension <https://cityjson.org/extensions/download/generic.ext.json> ;
city:hasObject c:city-objects-id-1 ;
city:hasTransform [city:scale [city:x ©.001 ;
city:y @.e01 ;
city:z @.e01] ;
city:translate [city:x ©.0 ;
city:y ©.0 ;
city:z @.e 1 1 ;
city:hasVertex c:vertices-©,c:vertices-1, c:vertices-2, c:vertices-3, c:vertices-4, c:vertices-5,c:vertices-6,c:vertices-7 ;
city:version "1.1" .

<https://cityjson.org/extensions/download/generic.ext.json> dct:identifier "Generic" ;
dct:version "1.0"

c:city-objects-id-1 a <https://www.cityjson.org/extensions/download/generic.ext.json#GenericCityObject> ;
city:hasFunction "something"
city:hasGeometry [city:hasSurface [a gml:Solid ;
city:boundaries (c:city-objects-id-1_geom_©)] ;
city:lod "3.3"] ;
dct:identifier "id-1" .

c:city-objects-id-1_geom_© a geojson:Feature ;
geojson:topology [a geojson:Polyhedron ;
geojson:relatedFeatures (c:city-objects-id-1_geom_©_1)] .

c:city-objects-id-1_geom_©_1 a geojson:Feature ;
geojson:topology [a geojson:MultiPolygon ;
geojson:relatedFeatures (c:city-objects-id-1_geom_©_1_1 c:city-objects-id-1_geom_©_1_2
bbjects—id—l_geom_e_1_4 c:city-objects-id-1_geom_©_1_5 c:city-objects-id-1_geom_0©_1_|

ity-objects-id-1_geom_©_1_3 c:city-
]

c:city-objects-id-1_geom_©_1_1 a geojson:Feature ;
geojson:topology [a geojson:Polygon ;
geojson:relatedFeatures (c:city-objects-id-1_geom_©_1_1_1)] .

...omitted...

c:vertices-@ a <https://example.com/Feature> ;
city:hasGeometry [a geojson:Point ;
geojson:coordinates ©,
1eee] ;
city:x @.0 ;
city:y @.0 ;
city:z 1e00.0 .

c:vertices-1 a <https://example.com/Feature> ;
city:hasGeometry [a geojson:Point ;
geojson:coordinates o,
1eee] ;
city:x 1000.0 ;
city:y @.0 ;
city:z 1e00.0 .

...omitted...

Figure 15 Sample RDF City dataset

D2.4: CHEK data validity-supporting tools

09/12/2024

CHEK - 101058559

The report generated by the application is returned as a JSON object that adheres to the following structure:

“valid”: Boolean value (true or false) indicating whether validation passed.

“val3dityResult”: Boolean value (true or false) indicating whether val3dity validation passed.
“shaclResult”: Boolean value (true or false) indicating whether profile (i.e., semantic rule collection) validation
passed.

“shaclReport”: Full SHACL report'8 containing the result of the profile validation.

“filevalidation” List (JSON array) of values, one per input file, with individual val3dity validation results.

The value for “shac1Report”is a JSON object obtained from parsing the SHACL report (generated in RDF format
by the SHACL module) and formatting it as JSON-LD using a mechanism called JSON-LD framing’, which makes it
possible to deterministically define the layout (property names, object nesting, etc.) of the resulting JSON-LD document.
In our case, the SHACL namespace is removed from the URIs (resulting in much more traditional-looking JSON field
names), and the report is laid out using the global SHACL ValidationReport object as the root node. The specific JSON-
LD frame used in our validator can be found at the following URL: https://github.com/ogcincubator/chek-data-
completeness/blob/059d592b31ae87bff8a799e36c0d9486522fcfab/app/jobs.py#L 22

The entries inside “filevalidation” use the following format:

“fileIndex”: the O-based index denoting the order of the file in the input dataset.

‘name”; the file name as provided by the user / client.

“valid” whether this individual file passed val3dity validation.

‘val3dityReport” the verbatim output provided by val3dity. val3dity’s documentation’® contains more
information about the specific format of this report'® and the types of errors that can be detected®.

An example of a simple, successful validation report using a dummy profile and the CityJSON cube example can be
seen in Figure 16. Figure 17 shows an excerpt ofthe “filevalidation”entry for a roads dataset with geometry

validation errors. Finally, a sample SHACL validation report with unmet constraints is shown in Figure 18..

16 https://www.w3.0rg/TR/shacl/#validation-report

17 https://www.w3.0rg/TR/json-Id11-framing/

18 https://val3dity.readthedocs.io/2.5.1/index.html

19 https://val3dity.readthedocs.io/2.5.1/usage.html#how-to-interpret-the-report

20 hitps://val3dity.readthedocs.io/2.5.1/errors.html
D2.4: CHEK data validity-supporting tools

09/12/2024

https://github.com/ogcincubator/chek-data-completeness/blob/059d592b31ae87bff8a799e36c0d9486522fcfab/app/jobs.py#L22
https://github.com/ogcincubator/chek-data-completeness/blob/059d592b31ae87bff8a799e36c0d9486522fcfab/app/jobs.py#L22
https://github.com/ogcincubator/chek-data-completeness/blob/059d592b31ae87bff8a799e36c0d9486522fcfab/app/jobs.py#L22
https://www.w3.org/TR/shacl/#validation-report
https://www.w3.org/TR/json-ld11-framing/
https://val3dity.readthedocs.io/2.5.1/index.html
https://val3dity.readthedocs.io/2.5.1/usage.html#how-to-interpret-the-report
https://val3dity.readthedocs.io/2.5.1/errors.html

@H E K CHEK - 101058559

DIGITAL BUILDING PERMIT

"valid": true,
"val3dityResult™: true,
"shaclResult”: true,
"shaclReport": {
“@context”

"http://www.w3 . org/ns/shacl#”,
"http://www.w3.org/ns/shacl#",
"result™: {

"@container™: "@set"

“@id"

"resultPath": {
"@type”: "@id",
"@container": "@set"
i
"resultSeverity™: {
‘ "@type": "@id"
}

1
“@type” ValidatienReport™,
"conforms™:

true

s

"filevalidation™: [{

"fileIndex": @,

"name": "cube.city.json",

"valid": true,
“gii_errcrs“: [,
"dataset_errors": [],
"features": [{

"errors": [],

tid": tid-1",

"primitives": [

{

"errors": [],
"ide mer,
"numberfaces": 6,

"validity": true

.
"type": "+GenericCityObject",
"validity": true
H,
"features_overview": [{
“total": 1,
"type": "+GenericCityObject",
Mvalid": 1

3,

"input_file™: "tmp/d4/d4b34447-d223-4603-a4lc-fade856dbed6/input_city.0.json™,
"input_file_type": "CityJSON",
"parameters™: {

"overlap_tol": -1,
“planarity_d2p tol": 9.01,
"planarity_n_tol": 2@,
"snap_tol": 0.001

+s

"primitives_overview": [{
"total": 1,

“type": "Solid",
"valid": 1

H,

"time": "Thu Nov 21 11:26:34 2024 UTC",
"type": "val3dity report”,
"val3dity version": "2.4.8",

"validity": true

3]

Figure 16 Successful validation of CityJSON cube example

D2.4: CHEK data validity-supporting tools

09/12/2024

@H E K CHEK — 101058559

DIGITAL BUILDING PERMIT

D2.4: CHEK data validity-supporting tools

09/12/2024

(V4 CHEK - 101058559

DIGITAL BUILDING PERMIT

{
"valid": false,
"val3dityResult": false,
- womitted. ..
"fileValidation™: [
i
"fileIndex": @,
"name": "roads-lod2__v3.json",
"valid": false,
"val3dityReport": {
"all_errors": [
102,
104,
S06
],
"dataset_errors™: [],
"features": [
{
"errors™": [
{
"code™: 906,
"description”: "PRIMITIVE_NO_GEOMETRY",
"id": "Feature has no geometry defined (or val3dity doesn't handle this type).",
"IfeMs "y,
"type": "Error"
h
1,
"id": "ID_@e3e6833-b969-3457-bc@6-923d6alleef9”,
"primitives”: null,
"type": "Road",
"validity": false
¥
{
"errors": [
{
"code": 906,
"description”: "PRIMITIVE_NO_GEOMETRY",
"id": "Feature has no geometry defined (or val3dity doesn't handle this type).",
Tankaty
"type™y “Erton"
¥
1,
"id": "ID_@9e43a5e-94ae-3dde-ab21-d66b24309489",
"primitives™”: null,
"type": "Road",
"validity": false
¥
]
}
¥
1
}

Figure 17 Excerpt of a val3dity report with incorrect geometry primitives

D2.4: CHEK data validity-supporting tools

09/12/2024

(V4 CHEK - 101058559

DIGITAL BUILDING PERMIT

i
"valid": false,
"val3dityResult": true,
"shaclResult": false,
"shaclReport": {
"@context": {
"shacl": "http://www.w3.org/ns/shacl#",
"@vocab": "http://www.w3.org/ns/shacl#",
"result": {
“@container”: "@set"
1,
"focusNode": {
"@type": "@id"
1,
“resultPath”: {
"@type": "@id",
“@container”: "@set"
1,
"pesultSeverity": {
"@type": "@id"
3
T,
"@type": "ValidationReport"”,
"conforms": false,
"pesult": [{
"@type": "ValidationResult",
"focusNode": "urn:chek:vocab/document™,
"resultMessage": "Building of interest not found in dataset",
"resultPath": ["http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type"],
"resultSeverity": "shacl:Violation",
"sourceConstraint": {
"prefixes": {
"@id": "http://example.org/"
1,
"select": "\n SELECT $this (rdf:type as ?path) (?buildingOfInterestValue as ?value) WHERE {
\n ?building0fInterestParam a sd:Parameter ;\n dct:identifier \"buildingOfInterest\" ;
\n sd:hasFixedValue ?buildingOfInterestValue ;\n -\n FILTER NOT EXISTS {
\n ?dataset city:hasObject/dct:identifier ?buildingOfInterestValue\n }
\n Hn 2
1
"sourceConstraintComponent": {
"@id": "shacl:SPARQLConstraintComponent™
I
"sourceShape": {
“@id": "urn:chek:profiles/ascoli-picenc#BuildingOfInterestPresent”
1
"value": "12345"
s
{
"@type": "ValidationResult",
"focusNode": "urn:chek:vocab/document™,
"resultMessage": "Dataset contains no Road objects"”,
"resultSeverity": "shacl:Violation",
"sourceConstraintComponent": {
“@id": "shacl:NotConstraintComponent"
1
"sourceShape": {
"@id": "urn:chek:profiles/roads-present#RoadsPresent”
1
"value": {
"@id": "urn:chek:vocab/document”
¥
i
s
spsomitteds s
i

Figure 18 Sample SHACL validation report with errors

D2.4: CHEK data validity-supporting tools

09/12/2024

CHEK - 101058559

The methodology described for the mode of operation of the validator shows how semantic technologies can be
leveraged to codify data validation rules (in this case, data requirements, but other types of constraints can also be
defined) that perform checks not only across different objects or entities, but across several datasets as well. The rules
can be defined in a declarative manner (i.e., avoiding general-purpose computer code that may introduce side effects),
following well-established standards, and with a set of metadata that makes them easily identifiable and helps interpret
the results of their application.

While the methodology and implementation described here have been proven effective, certain limitations must be
considered:

The use of a common (standard) City RDF specification would be desirable. However, interoperability, both on the data
and rule-checking levels, can be achieved even with our ad-hoc conceptual model.

The conversion from CityGML to CityJSON is not guaranteed to be lossless. This process could be further refined by
transforming CityGML into RDF directly.

While the GeoSPARQL?" standard defines a set of classes, properties and functions for representing and working with
geometries in RDF, support for 3D geometry is missing. This means that (currently) any checks involving geometries
are impossible to implement using the RDF-based validator. Therefore, they are checked with Val3dity that has been
developed outside of CHEK for this purpose.

The flexibility and expressivity that can be achieved using semantic technologies are in a trade-off relationship with the
ease and user-friendliness of writing the actual rules. However, while intimate knowledge of both the ad-hoc city data
models and semantic technologies (RDF, SHACL, SPARQL) is currently required for such a task, interfaces can be
developed to support a range of common use cases, leaving only the most complex ones to be written by hand.

Displaying report results in a more user-friendly manner is also something that will be revisited in the near future. Right
now, the HTML interface of the tool, including error reporting, is mostly geared towards demonstrating how the
methodology can be applied to the task at hand. However, due to the ease and standards-compliance of the integration
mechanisms available, other interfaces can also be developed for the same service. For example, as a Revit plugin
that connects to the service and interprets the validation results for the end user.

21 hitps://lwww.ogc.org/es/publications/standard/geosparql/
D2.4: CHEK data validity-supporting tools

09/12/2024

https://www.ogc.org/es/publications/standard/geosparql/

CHEK - 101058559

Figure 1 WP2 workflow with T2.5/D2.4 highlighted..........ccccviiiiieiiiiecce s 5
Figure 2 IFC Viewer screenshot Lisbon design in Autodesk Revit with 1352 identified iISSUES.ccccvirvriinirineininnn. 9
Figure 3 IFC Viewer screenshot Praha design in Autodesk Revit with 1518 identified iSSUES.cccouvieiriericirienne. 10
Figure 4 IFC Viewer screenshot converted CityGML model without any identified iSSUE.ccceveeviiriiccciciie, 10
Figure 5 API of the IFC Engine library used for EXPRESS (ISO 10303-11) validation.............ccccveevrrvrireeeesreinnen. 12
Figure 6 IFC Viewer screenshot IDS Validation in Ascoli Piceno MOdel.cccirieinierieininenineneeeseeeens 13
Figure 7 IFC Viewer screenshot PSD Validation in GAIA MOGEL. ..o 15
Figure 8 User Interface of Chek [FC EXPOMEL ..ot 17
Figure 9 General operation workflow for the CityGML / CityJSON validator...........ccoceevviicceessccccees e 21
Figure 10 Look and feel of the HTML INtErfaCeceu i 23
Figure 11 Issues that val3dity iS @ble t0 AEIECLcoiieicc e 24
Figure 12 Sample SHACL shape for a data requirements rule in RDF Turtle format............ccocoevveeinviiicccssiene, 26
Figure 13 Sample metadata definition for a data requirements profile...........ccccvvveiceincicccee e 27
Figure 14 Semantic uplift workflow for CityGML / CityJSON data............ccoueerirririniinierirereseceeeeeseeeeeens 28
Figure 15 Sample RDF City datasetcouiiiiriiiie b 30
Figure 16 Successful validation of CityJSON cube exampleccccovviiiceeiicccce e 32
Figure 17 Excerpt of a val3dity report with incorrect geometry primitivescccoeveeeirsciccse e 34
Figure 18 Sample SHACL validation report With €TOIS............cccoieiieiese s 35
Table 1: results of the EXPRESS ValidatioN ... s 11
Table 2: results of the IDS ValIdAtion ..o s 14
Table 3: results of the PSD ValidAtion ..o 15

D2.4: CHEK data validity-supporting tools

09/12/2024

BIM
CHEK
DBP
DCMI
DIR
EC

IDS
IFC
JSON
JSON-LD
LoD
0GC
PSD
PSet
RDF
SHACL
SPARQL
SQL
TUD
URI
URN
WP
XML
XSD

Building information modelling

Change toolkit for digital building permit
Digital Building Permit

Dublin Core Metadata Initiative

DiRoots

European Commission

Information Delivery Specification

Industry Foundation Classes

JavaScript Object Notation

JavaScript Object Notation for Linked Data
Level of Detail

Open Geospatial Consortium

Property Set Definition

Property Set

Resource Description Framework

Shapes Constraint Language

SPARQL Protocol and RDF Query Language
Structured Query Language

Technische Universiteit Delft (Delft University of Technology)
Uniform Resource Identifier

Uniform Resource Names

Work Package

Extensible Markup Language

XML Schema Definition

D2.4: CHEK data validity-supporting tools

09/12/2024

CHEK - 101058559

	1. Executive Summary
	2. Introduction
	3. IFC Validator
	3.1 General description
	3.2 EXPRESS Schema Validation
	3.3 IDS 1.0 Validation
	3.4 PSD Validation
	3.5 Micro-Services Validation Use
	3.6 Future Steps

	4. IFC Exporter
	4.1 General description
	4.2 Application Workflow
	4.3 Achievements

	5. CityGML / CityJSON data requirements and geometry validator
	5.1 General description
	5.2 Architecture and interoperability
	5.3 Geometry validation
	5.4 Semantic data and semantic validation
	5.5 Data models
	5.5.1 Profile definition
	5.5.2 City RDF model
	5.5.3 Validation report

	5.6 Results, and next steps
	List of Figures
	List of Tables
	List of used abbreviations

